Exchange Algorithms for Constructing Model-Robust Experimental Designs

Byran Smucker1, Enrique del Castillo2, and James L. Rosenberger1
1Department of Statistics
The Pennsylvania State University, University Park PA 16802
2Department of Industrial & Manufacturing Engineering
The Pennsylvania State University, University Park PA 16802

October 2009

Optimal experimental design procedures, utilizing criteria such as D-optimality, are useful for producing experimental designs for quantitative responses, often under nonstandard conditions such as constrained design spaces. However, these methods require a priori knowledge of the exact form of the response function, an often unrealistic assumption. Model-robust designs are those which, from our perspective, are efficient with respect to a set of possible models. In this paper, we develop a model-robust technique which, when the possible models are nested, is D-optimal with respect to an associated multiresponse model. In addition to providing a justification for the procedure, this motivates the generalization of a modified Fedorov exchange algorithm, which is developed and used to construct exact model-robust designs. We give several examples and compare our designs with two model-robust procedures in the literature.